74CBTLVD3244

8-bit level-shifting bus switch with 4-bit output enables

Rev. 1 — 15 July 2011

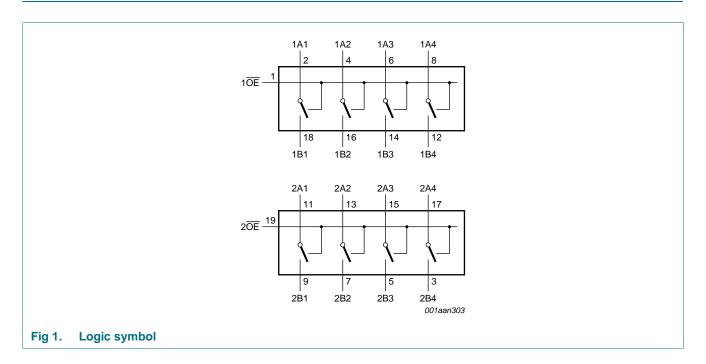
Product data sheet

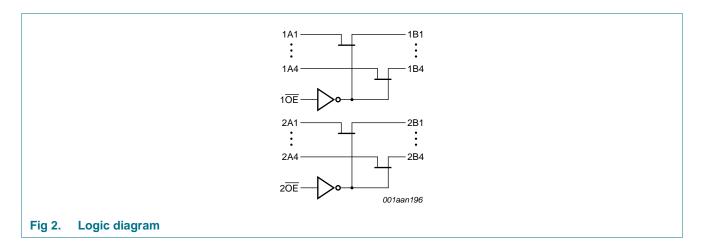
1. General description

The 74CBTLVD3244 is <u>a dual 4-pole</u>, single-throw bus switch. The device features two output enable inputs (nOE) that <u>each</u> control four switch channels. The switches are disabled when the associated nOE input is HIGH. Schmitt trigger action at control inputs makes the circuit tolerant of slower input rise and fall times. This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

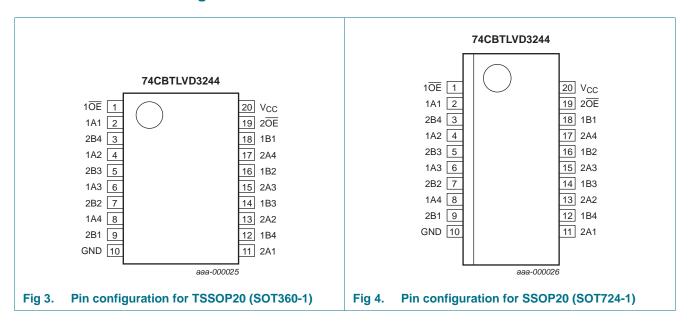
- Supply voltage range from 3.0 V to 3.6 V
- High noise immunity
- Complies with JEDEC standard:
 - ◆ JESD8-B/JESD36 (3.0 V to 3.6 V)
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - CDM AEC-Q100-011 revision B exceeds 1000 V
- \blacksquare 5 Ω switch connection between two ports
- Rail to rail switching on data I/O ports
- CMOS low power consumption
- Latch-up performance exceeds 250 mA per JESD78B Class I level A
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

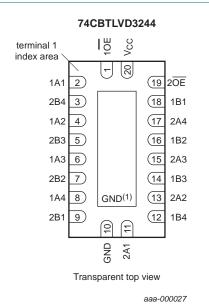

3. Ordering information


Table 1. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74CBTLVD3244DS	–40 °C to +125 °C	SSOP20[1]	plastic shrink small outline package; 20 leads; body width 3.9 mm; lead pitch 0.635 mm	SOT724-1					
74CBTLVD3244PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1					
74CBTLVD3244BQ	–40 °C to +125 °C	DHVQFN20	plastic dual-in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body $2.5\times4.5\times0.85$ mm	SOT764-1					

^[1] Also known as QSOP20 package


4. Functional diagram



5. Pinning information

5.1 Pinning

(1) This is not a supply pin, the substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad however if it is soldered the solder land should remain floating or be connected to GND.

Fig 5. Pin configuration for DHVQFN20 (SOT764-1)

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1 0E , 2 0E	1, 19	output enable input (active LOW)
1A1 to 1A4	2, 4, 6, 8	data input/output (A port)
2B1 to 2B4	9, 7, 5, 3	data input/output (A port)
GND	10	ground (0 V)
2A1 to 2A4	11, 13, 15, 17	data input/output (B port)
1B1 to 1B4	18, 16, 14, 12	data input/output (B port)
V _{CC}	20	positive supply voltage

6. Functional description

Table 3. Function selection[1]

	Input/output
nOE	nAn, nBn
L	nAn = nBn
H	Ζ

[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
V_{SW}	switch voltage	enable and disable mode	<u>[1]</u> –0.5	$V_{CC} + 0.5$	V
I _{IK}	input clamping current	$V_{I/O} < -0.5 V$	–50	-	mA
I _{SK}	switch clamping current	$V_1 < -0.5 \text{ V}$	-50	-	mA
I_{SW}	switch current	$V_{SW} = 0 V to V_{CC}$	-	±128	mA
I _{CC}	supply current		-	+100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	[2] _	500	mW

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		3.0	3.6	V
VI	input voltage		0	3.6	V
V_{SW}	switch voltage	enable and disable mode	0	V_{CC}	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V _{CC} = 3.0 V to 3.6 V	<u>[1]</u> 0	200	ns/V

^[1] Applies to control signal levels.

9. Static characteristics

Table 6. Static characteristics

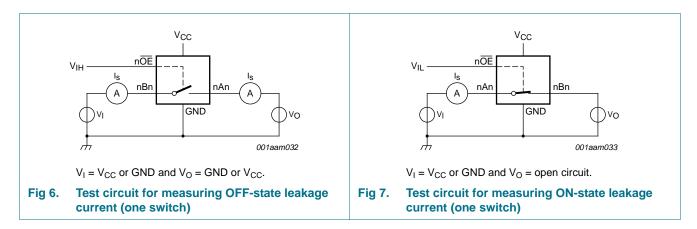
At recommended operating conditions voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T_{amb} = -40 °C to +85 °C			T _{amb} = -40 °	Unit	
			Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.0	-	-	2.0	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-	0.9	-	0.9	V
I _I	input leakage current	pin $n\overline{OE}$; $V_1 = GND$ to V_{CC} ; $V_{CC} = 3.6 \text{ V}$	-	-	±1	-	±20	μΑ
V_{pass}	pass voltage	V _I = V _{CC} ; see <u>Figure 8</u> to <u>Figure 12</u>	-	-	-	-	-	V

74CBTLVD3244

All information provided in this document is subject to legal disclaimers.

^[2] For SSOP20 and TSSOP20 packages: above 60 °C the value of P_{tot} derates linearly at 5.5 mW/K. For DHVQFN20 packages: above 60 °C the value of P_{tot} derates linearly at 4.5 mW/K.


Table 6. Static characteristics ...continued

At recommended operating conditions voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		T _{amb} =	–40 °C to ⋅	+85 °C	T _{amb} = -40 °0	C to +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 3.6 \text{ V}$; see Figure 6	'	-	-	±1	-	±20	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 3.6 \text{ V}$; see Figure 7		-	-	±1	-	±20	μΑ
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V}$		-	-	±10	-	±50	μΑ
I _{CC}	supply current	$V_I = V_{CC}$; $I_O = 0$ A; $V_{CC} = 3.6$ V; $V_{SW} = GND$ or V_{CC}		-	-	20	-	50	μΑ
		$V_I = GND$; $I_O = 0$ A; $V_{CC} = 3.6$ V; $V_{SW} = GND$ or V_{CC}		-	-	100	-	150	μΑ
ΔI_{CC}	additional supply current	pin \overline{OE} ; $V_1 = V_{CC} - 0.6 \text{ V}$; $V_{SW} = GND \text{ or } V_{CC}$; $V_{CC} = 3.6 \text{ V}$	[2]	-	-	300	-	2000	μΑ
Cı	input capacitance	pin $n\overline{OE}$; $V_{CC} = 3.3 \text{ V}$; $V_{I} = 0 \text{ V}$ to 3.3 V		-	0.9	-	-	-	pF
C _{S(OFF)}	OFF-state capacitance	$V_{CC} = 3.3 \text{ V}; V_I = 0 \text{ V to } 3.3 \text{ V}$		-	2.5	-	-	-	pF
C _{S(ON)}	ON-state capacitance	$V_{CC} = 3.3 \text{ V}; V_I = 0 \text{ V to } 3.3 \text{ V}$		-	9.0	-	-	-	pF

^[1] All typical values are measured at T_{amb} = 25 °C.

9.1 Test circuits

^[2] One input at 3 V, other inputs at V_{CC} or GND.

9.2 Typical pass voltage graphs

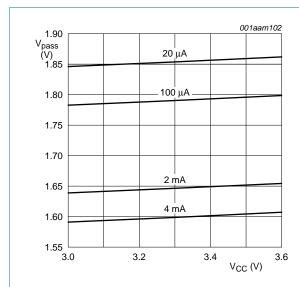


Fig 8. Pass voltage versus supply voltage; $T_{amb} = 125$ °C (typical)

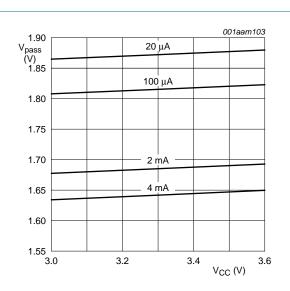


Fig 9. Pass voltage versus supply voltage; T_{amb} = 85 °C (typical)

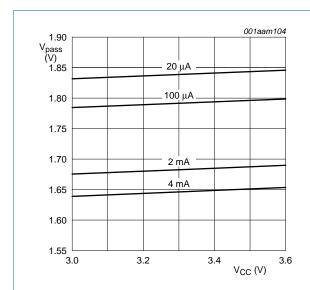


Fig 10. Pass voltage versus supply voltage; $T_{amb} = 25$ °C (typical)

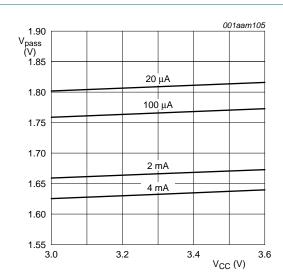
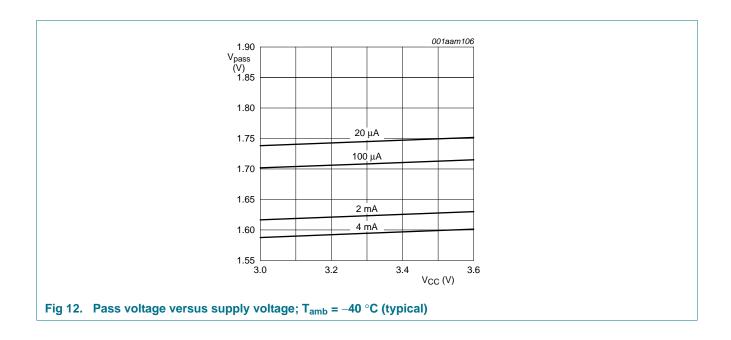



Fig 11. Pass voltage versus supply voltage; $T_{amb} = 0$ °C (typical)

9.3 ON resistance

Table 7. Resistance Ron

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 13.

Symbol	Parameter	Conditions	T _{amb} =	–40 °C to	+85 °C	T _{amb} = -40 °	Unit	
			Min	Typ[1]	Max	Min	Max	
R _{ON}	ON resistance	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$				'	•	
		$I_{SW} = 64 \text{ mA}; V_I = 0 \text{ V}$	-	3.7	7.0	-	10.0	Ω
		$I_{SW} = 24 \text{ mA}; V_I = 0 \text{ V}$	-	3.7	7.0	-	10.0	Ω
		$I_{SW} = 15 \text{ mA}; V_I = 1.2 \text{ V}$	-	4.7	10.0	-	12.0	Ω

^[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} .

9.4 ON resistance test circuit

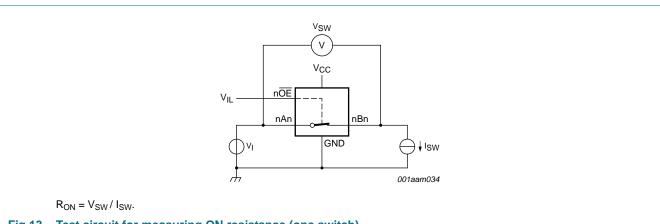
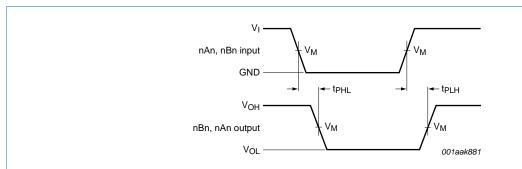


Fig 13. Test circuit for measuring ON resistance (one switch)

Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

10. Dynamic characteristics

Table 8. Dynamic characteristics


GND = 0 V; for test circuit see Figure 16

Symbol	Parameter	Conditions		T_{amb} = -40 °C to +85 °C			$T_{amb} = -40$ °	Unit	
				Min	Typ[1]	Max	Min	Max	
t _{pd} propagation delay		nAn to nBn or nBn to nAn; see Figure 14	<u>3]</u>						
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	0.11	-	0.22	ns
t _{en}	enable time	nOE to nAn or nBn; see Figure 15	<u>4]</u>						
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.5	2.8	5.0	1.5	6.0	ns
t _{dis}	disable time	nOE to nAn or nBn; see Figure 15	<u>5]</u>						
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		8.0	3.1	7.0	0.8	8.0	ns

^[1] All typical values are measured at T_{amb} = 25 °C and at nominal V_{CC} .

- [3] t_{pd} is the same as t_{PLH} and t_{PHL}.
- [4] t_{en} is the same as t_{PZH} and t_{PZL} .
- [5] t_{dis} is the same as t_{PHZ} and t_{PLZ}.

11. Waveforms

Measurement points are given in Table 9.

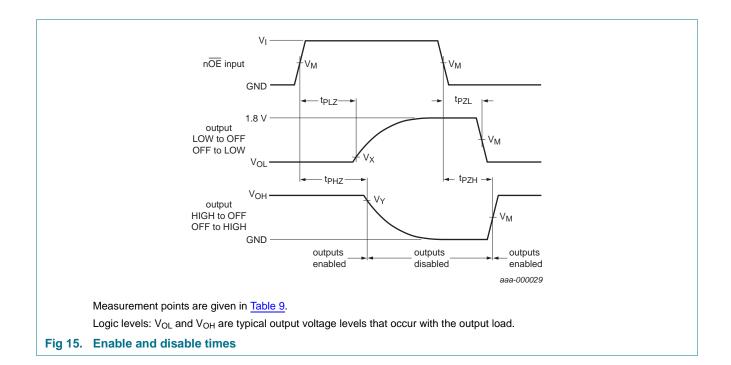
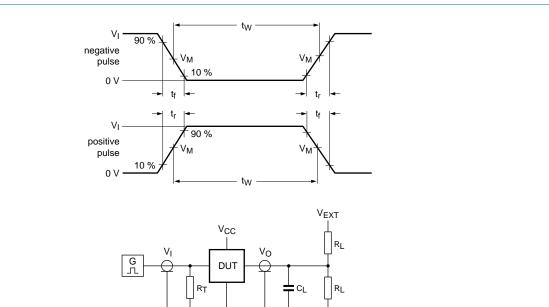

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 14. The data input (nAn, nBn) to output (nBn, nAn) propagation delay times


Table 9. Measurement points

Supply voltage	Input			Output		
V _{CC}	V_{M} V_{I} $t_{r} = t_{f}$		$t_r = t_f$	V_{M} V_{X}		V _Y
3.0 V to 3.6 V	0.5V _{CC}	V _{CC}	≤ 2.0 ns	0.9 V	V _{OL} + 0.15 V	$V_{OH}-0.15\ V$

^[2] The propagation delay is the calculated RC time constant of the on-state resistance of the switch and the load capacitance, when driven by an ideal voltage source (zero output impedance).

11 of 20

001aae331

Test data is given in Table 10.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

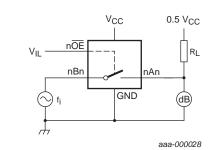
 V_{EXT} = External voltage for measuring switching times.

Fig 16. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Load	V _{EXT}			
V _{CC}	CL	R_L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
3.0 V to 3.6 V	30 pF	1 kΩ	open	GND	3.6 V

11.1 Additional dynamic characteristics


Table 11. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $V_l = GND$ or V_{CC} (unless otherwise specified); $t_r = t_f \le 2.5$ ns.

Symbol	Parameter	Conditions		T _{amb} = 25 °C			Unit
				Min	Тур	Max	
$f_{(-3dB)}$	−3 dB frequency response	$V_{CC} = 3.3 \text{ V}; R_L = 50 \Omega; \text{ see } \underline{\text{Figure 17}}$	[2]	-	575	-	MHz

- [1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 3.3 V.
- [2] f_i is biased at $0.5V_{CC}$.

11.2 Test circuits

nOE connected to GND; Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads –3 dB.

Fig 17. Test circuit for measuring the frequency response when channel is in ON-state

12. Package outline

SSOP20: plastic shrink small outline package; 20 leads; body width 3.9 mm; lead pitch 0.635 mm SOT724-1

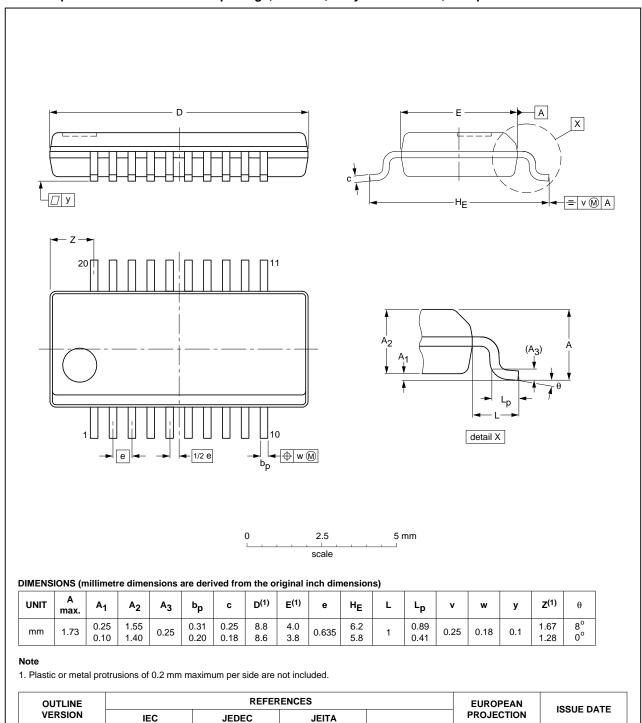


Fig 18. Package outline SOT724-1 (SSOP20)

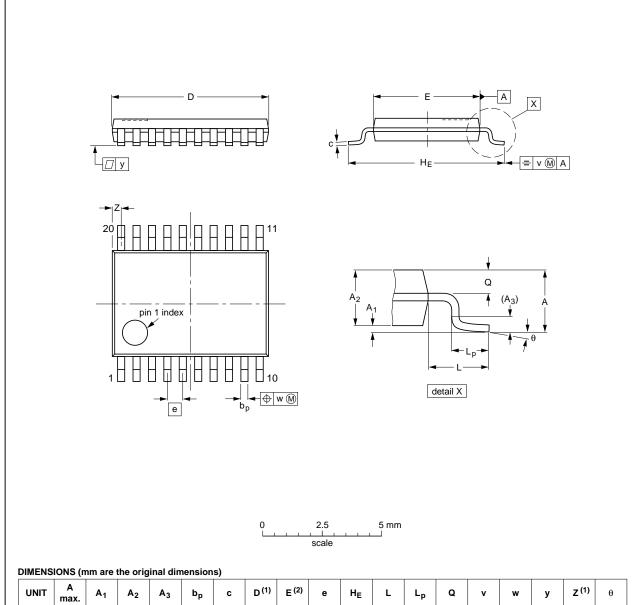
IEC

74CBTLVD3244 All information provided in this document is subject to legal disclaimers.

MO-137

© NXP B.V. 2011. All rights reserved.

01-07-04


03-02-18

SOT724-1

JEITA

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

				,		-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT360-1		MO-153				99-12-27 03-02-19	

Fig 19. Package outline SOT360-1 (TSSOP20)

74CBTLVD3244

All information provided in this document is subject to legal disclaimers.

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

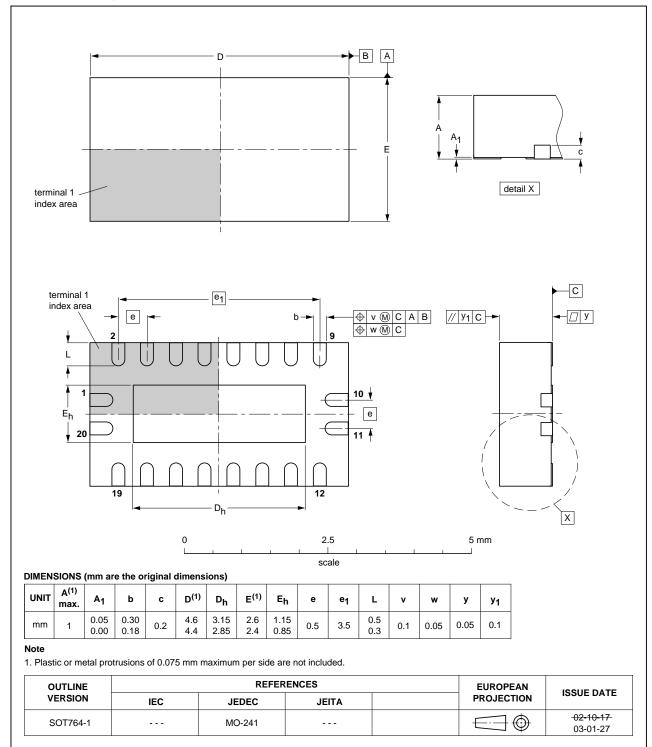


Fig 20. Package outline SOT764-1 (DHVQFN20)

74CBTLVD3244 All information provided in this document is subject to legal disclaimers.

13. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74CBTLVD3244 v.1	20110715	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be

suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74CBTLVD3244

All information provided in this document is subject to legal disclaimers.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

17. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 4
6	Functional description 4
7	Limiting values 5
8	Recommended operating conditions 5
9	Static characteristics 5
9.1	Test circuits 6
9.2	Typical pass voltage graphs 7
9.3	ON resistance9
9.4	ON resistance test circuit 9
10	Dynamic characteristics 10
11	Waveforms
11.1	Additional dynamic characteristics 13
11.2	Test circuits
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks19
16	Contact information
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.